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The mechanical behaviour of a slowly quenched isotactic poiypropylene has been studied for various 
strain histories in extension. Creep, constant rate of strain, and constant rate of loading experiments were 
carried out at deformations up to and beyond the point where necking occurs. A creep diagram, which 
includes the failure envelope, is presented. From the available data we have also obtained an 
extrapolated surface of the single step stress-relaxation behaviour. From this surface we can calculate, 
using the Bernstein and Zapas theory on the instability of viscoelastic bars, the deformation at which 
necking occurs for various strain histories. 
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I N T R O D U C T I O N  

In 1975 Ericksen I presented work on the discontinuous 
deformations of solid elastic bars. Recently Bernstein and 
Zapas 2 extended this work to viscoelastic materials which 
obey the BKZ theory 3. As in the case of Ericksen's work, 
the Bernstein and Zapas treatment cannot predict a priori 
when the material will exhibit the phenomenon of 
necking, but it does give an explanation for the formation 
of the neck, which depends on the stretch history. Here, (1) 
we present experimental data, obtained using a variety of 
strain histories, for a material which can be described 
fairly well by the BKZ theory, and (2) we show consistency 
between the theory and the experimental results by 
suitably extrapolating the available data into regions 
which are not accessible experimentally. 

For this purpose, we have selected as a material for our 
experiments a rather slowly quenched isotactic 
polypropylene. A set of experiments was performed which 
involved a variety of different strain histories in uniaxial 
extension. These included single step stress-relaxation, 
constant rate of strain, constant rate of loading, and creep 
under a fixed applied load. In each case the measurements 
were made up to and beyond the point of necking until 
fracture occurred. 

T H E O R E T I C A L  C O N S I D E R A T I O N S  

We shall be concerned only with deformation histories in 
uniaxial extension, and begin by considering a bar of 
material which has been at rest at all times up to r = 0; its 
length in the undeformed state is l 0. At time r>~0 it is 
subjected to a given stretch history, whereby the bar at 
time z has a length l(r). In this situation the BKZ theory 3 
gives the following relationship: 

t 

(" [p(t) "~dz 
, 

0 

(1) 

where 6(t) is the true stress at time t, and p(r)=l(z)/l o. 
Throughout  this paper we shall follow the convention 
that prime means the derivative of the function with 
respect to the first argument, and star means the 
derivative with respect to the second argument. Thus: 

OH(p,t) c?H(p,t) 
H'(#,t)= ~p(r) ' and H ,(#,t)- ?t 

From equation (1), it can be seen that if the bar at time 
= 0  is subjected to a single step in strain, p(t), then the 

stress necessary to keep the bar stretched at time t is equal 
to H(p(t),t), where H(1,t)=0. From data obtained from 
single step stress-relaxation experiments carried out at 
different levels of strain, it is evident that one can 
determine the stress response for any other strain history 
in uniaxial extension. However, since equation (1) is 
nonlinear, one cannot determine the strain as a function of 
the stress, as for example in a creep experiment. Equation 
(1) applies to the type of experiment where knowing the 
strain history one can determine the stress response and 
the calculated values can then be compared with 
experimentally determined quantities. 

Bernstein and Zapas 2 have shown that for certain 
materials, which we shall refer to as BKZ materials, an 
instability may occur at some level of strain, the result of 
which is the phenomenon of necking. In order to be 
consistent with their nomenclature, we shall rewrite 
equation (1) in the form: 

t 

, 1 , )~ 
a(t)=w (p(t),t)- f ~r) w , ( ~ ) , t -  z)dz, 

0 

where a(t) now is the engineering stress and: 

(2) 

, 1 w (p(t),t)= ,.,H(p(t),t) p~t) 
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Isochronal jump curve 
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Bernstein and Zapas then define a jump stress as follows: 

t 

('1 ) 
o 

(3) 

In equation (3), crj(2,t) is the value of the instantaneous 
stress that the material would produce at time r = t upon 
being subjected to an instantaneous stretch of magnitude 
2 following a history #(z). For a particular history, #(~), 
one can obtain the value of crj(2,r) for different values of 2. 
If the isochronal jump curve can be represented 
schematically as in Figure 1, then for the case where the 
area A 1 is larger than A 2 the material is stable, but when 
A 1 becomes smaller than A 2 necking will occur. 

EXPERIMENTAL 

Material and specimen preparation 

The polymer was an experimental sample of isotactic 
polypropylene provided by the Avisun Corporation.* It 
had a viscosity average molecular weight of 207 000 and 
contained 2.56~o material extractable in C 7 H 1 6 .  It 
contained 0.02 per cent of stabilizer. This was the same 
material as that used in the earlier mechanical behaviour 
studies by Passaglia and Martin 4 and by Crissman s. 

As supplied, the material was in the form of pellets 
which initially were compression moulded into flat sheets 
having a nominal thickness of about 0.06 cm. This was 
accomplished by placing the pellets in a mould which 
consisted of two chromed photographic plates separated 
by a 0.06 cm thick aluminium plate having a 15 cm 
diameter hole. The mould was placed in a press and 
heated to 463 K (~ 190~'C) at which temperature it was 
held for ten rain. Pressure sufficient to ensure the proper 
fusion of the moulded polymer was then applied, after 
which the entire mould was quickly removed from the 
press and plunged into cold water* Sheets prepared in this 
manner had a density ranging from 0.898 to 0.901 g cm - 3. 
Specimens having one of two types of geometries were cut 
from the sheets with a die. For the single step stress 

* Certain commercial materials and equipment are identified in this 
paper in order to specify adequately the experimental procedure. In no 
case does such identification imply recommendation or endorsement by 
the National Bureau of Standards, nor does it imply necessarily the best 
available for the purpose. 

relaxation experiments the specimens were cut to conform 
with the geometry of the 'T-50' bar described in ASTM 
D599-61 (ref. 6). In that geometry the width of the narrow 
section is constant over the entire portion of the specimen 
lying between the grips. For all of the other experiments 
the specimens conformed to the more conventional 
dumbbell geometry described in ASTM D638-72, type 
IV, v except that in the present case all the specimen 
dimensions were scaled down by a factor of two. The 
specimens were aged at room temperature for a period of 
at least one month prior to the experiments. 

Apparatus and method 
Creep experiments were done at room temperature 

(297 _+ 0.5 K) under conditions of dead loading (constant 
applied engineering stress) in the range from 14.2 to 23.2 
MPa. The elongation of the specimen as a function of time 
was determined by monitoring with a cathetometer the 
distance between fiducial marks placed on the guage 
section of the dumbbell. 

Single step stress~elaxation experiments were carried 
out at 297 K in an environmental chamber in which the 
temperature held constant to within 0.03 K over the 
duration of the test. A correction to the stress-relaxation 
data has been made which concerns the fact that a finite 
time is required in order to apply the step in strain. Zapas 
and Phillips s have shown that to a good approximation 
the relaxation function can be represented by the relation: 

o(t + tl/2)/e 

where t is the time following application of the step, t I is 
the time required to impose the step, and e is the strain. In 
the present set of experiments the step time was generally 
in the range from 0.5 to 1.5 s, so that in our data the 
correction rapidly becomes small. 

Two other types of experiments will be described in this 
work. These are histories involving constant rate of clamp 
separation and constant rate of loading (engineering 
stress). Both experiments were done on a servo-controlled 
hydraulic test machine. Because of the large deformations 
to which these specimens were subjected, the strain was 
determined with the aid of a cathetomer rather than an 
extensometer. 

RESULTS 

Sin qle step stress relaxation 

A knowledge of the single step stress relaxation 
behaviour (at various strains and times) in uniaxial 
extension is sufficient to describe the behaviour for any 
other strain history in uniaxial extension, at least within 
the range of strains and times for which the experimental 
data are available. In such an experiment the specimen, at 
a time t = 0, is subjected to a sudden step in strain and the 
stress response is measured as a function of time. In the 
present work we have examined the stress-relaxation 
behaviour for a series of steps in strain up to 9.0~, and 
some of the data are tabulated in Table 1. At strains 
greater than about 9 10~o the specimens always necked 
upon application of the step. 

In Figure 2, the data in Table 1 have been replotted as 
isochrones of log true stress versus log strain. The 
isochrones cover four decades in time. The behaviour is 
highly nonlinear over nearly the entire range of strains 
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Table 1 Stre,,~--relaxation data for slowly quenched isotatic polypropylene 

True stress (MPa) for the values of strain indicated 

Time (s) e = 0.0037 e = 0.0079 e = 0.01 26 e = 0.0288 • = 0.076 

0.62 5.37 11.1 1 7.0 27.4 36.8 
1.25 5.33 11.0 16.7 26.2 33.0 
1.88 5.26 10.9 16.4 25.2 30.9 
3.13 5,18 10.7 16.0 24.3 29.1 
4.40 5.14 10.5 1 5.7 23.6 28.2 
9.40 5.01 10.2 14.9 22.2 26.4 

14.4 4.90 10.0 14.5 21.4 25.2 
29.4 4.76 9.60 13.8 20.3 23.8 
59.4 4,61 9.30 13.1 19.0 22.4 

1 20 4.44 8.90 12.3 18.1 21.1 
240 4.30 8.50 11,6 17.0 20.0 
480 4.16 8.20 11.0 16.1 18.9 

1000 3.99 7.80 10.3 15.1 1 7.9 
2000 3.88 7.50 9.60 14.2 1 7.0 
3600 3.76 7.11 9.10 13.6 16.3 
7200 3.62 6.87 8.70 1 2.8 1 5.5 

10 000 3.57 6.75 8.40 1 2.6 14,8 
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Figure 3 Percent elongation of specimen as a function of time. 
Elongation is also shown in absence of end effects 

examined. For the polypropylene the stress-strain 
behaviour becomes linear only in the region of strain 
below 1%. Observe that at a strain of 7.6% the isochrones 
are flanening to a zero slope, and the modulus has been 
reduced b,y a factor of at least 3.2 from what it would have 
been if the behaviour were linear. Also, at strains above 
about 3% the nonlinearity becomes essentially 

independent of time, i.e. the isochrones form a set of nearly 
parallel curves. 

Constant rate of strain experiments 
In this set of experiments the specimens were extended 

at a constant rate of clamp separation. In Figure 3, we 
show for one experiment (at a rate of 5 × 10 5) the per cent 
elongation of the specimen, as measured between fiducial 
marks placed on the guage portion of the dumbbell, as a 
function of time. Also shown is the elongation which the 
specimen would have had in the absence of end effects. 
The dotted straight line drawn through the point (0,0) 
does not deviate much from the actual data points, 
therefore, we can assume that the experiments were done 
at constant rate of elongation. In Figure 4 the measured 
engineering stress versus strain is shown for four different 
rates which vary by a factor of 10 3. The first result of 
interest is that the stress (for a given strain) varies only by a 
factor of 1.7 even though the rate varied by a factor 10 3. 
Also, the specimens did not neck at the strain, eM (the 
strain at the maximum stress), but necked at a larger 
strain, eN, as is indicated by the letter N in Figure 4. The 
maximum in the stress, aM, and the strain at the point of 
necking, eN, both occur at successively larger strains as the 
rate of elongation decreases. After necking occurred the 
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Table 2 Summary of  constant rate of strain exper iments 

K a OM b eM c eN d ep e 

6.8 x 10 - 3  29,6 0.08 0.16 19.2 
6.0 x 10 - 4  27.0 0.10 0.19 1 7.4 
5.1 x 10 - 5  22.9 0.10 0.21 14.8 
7.6 x 10 --6 19.2 0.12 0.24 1 2.8 

a Rate o f  strain per second 
b Maximum stress prior to  necking (MPa) 
c Strain at the point  o f  max imum stress 
d Strain at the point  where necking occurred 
e Plateau value of  stress (MPa) 
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stress plateaued before rising again at the very large 
strains. Values ofeM, a~4, eN, and ap as a function of the rate 
tc are summarized in Table 2. 

Using equation (1), we have calculated the stress for a 
constant rate of elongation experiment, and the values 
obtained were somewhat lower than the experimental 
values, the maximum deviation being about 7~o. The 
existence of the maximum in the engineering stress 
suggests that w'(lt,t), at constant I~, has a maximu, and 
the position of the various maxima will depend upon time. 
The isochrones at the shorter times will have a maximum 
at smaller values of strain. 

Constant rate of  loading 
This experiment involves increasing the engineering 

stress at a constant rate and the strain is determined as a 
function of time. One characteristic of constant rate of 
loading experiments is that as soon as the specimen has 
necked it breaks. Figure 5 shows log strain versus log time 
for specimens subjected to rates of loading which differed 
by a factor of ten. The curves A and B can be superposed 
by a shift along the time axis alone. At a rate of 1.83 x 10 s 
the specimen necked and broke at a strain of about 0.14, 
whereas at a rate of 1.78 x 10 4 fracture occurred at a 
strain of 0.22. As in the constant rate of strain experiment, 
necking occurred at a higher strain in the specimen 
subjected to the lower rate of loading. Since the two curves 
A and B can be superposed, it can be shown from the BKZ 
theory that a versus e can also be superposed by a shift 
along the stress axis. That this is true can be seen in Figure 
6 where we have shown a plot of log stress versus log strain 
for the same two rates of loading. We note that for the 

constant rate of loading experiments the strain was 
determined with the aid of a cathetometer rather than an 
extensometer in order to avoid the possibility that the 
attachment of the extensometer could contribute to the 
premature necking of the specimen. 

In a third constant rate of loading experiment, shown 
by the dashed line in Figure 5, the data were obtained 
using two different rates of loading. The initial rate was 
the same as that for the specimen subjected to a rate of 
1.83 x 10 -3. Then when a stress of 2.20 x 1 0  7 Pa was 
reached the rate was changed to a much slower one 
(~-1.8 x l0 s), so that the stress response was nearly 
constant, and the second step could almost be considered 
as a creep experiment. For this specimen, necking and 
fracture occurred at a strain of 0.19, which was 
intermediate to the strains at which the other two 
specimens broke. 

Creep 
Shown in Figure 7 are creep curves for eight specimens 

subjected to engineering stresses in the range 14.2~3.2 
MPa. The letter N indicates the time and strain at which 
the specimens necked and the letter/~ the elongation at 
which the neck had propagated through the straight 
portion of the specimen. Except for the specimen having 
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Figure 8 Data from Figure 8 in terms of isochrones of strain 
versus the applied engineering stress 

the smallest load (filled triangles) the creep experiment 
was continued up until the point at which fracture 
occurred. The two specimens having the largest loads 
(open circles and squares) both fractured almost 
immediately upon necking. The four specimens having 
intermediate loads all drew substantially before fracture 
occurred. For these four the maximum stretch (2) was 14~ 
15, which means that the point/~ (2 = 6) represents only 
about 40~/o of the total creep attainable in this material at 
room temperature. The specimen under stress of 15.2 
MPa  (hexagons) necked and then fractured during the 
early stages of drawing. Even though this specimen 
required much longer to neck than did three of the 
specimens having higher loads, it is interesting that it 
fractured sooner. A general observation is that the point 
at which necking occurred shifts to larger strain with 
decreased load. 

As an aside we note that the creep behaviour of the 
polypropylene is in many respects similar to that of linear 
polyethylenes which have a weight average molecular 
weight in the range from 0.9 x 105 to 2.0 x 105, and a 
number average molecular weight of ~ 1.5 x 104. We have 
shown in previous work 9 that in uniaxial creep 
polyethylene exhibits at least two distinct failure modes. 
In one case, that of relatively large stresses, the material 
undergoes an instability which leads to necking, and then, 
depending upon the molecular weight and molecular 
weight distribution, may cold-draw substantially before 
breaking. In the second case, that of relatively small 
stresses, the specimen no longer exhibits necking, but 
rather fails by cracking. In the latter case the fracture can 
occur at ,;trains as small as 5~o and below. In the case of 
polyethylene, the transition from a mechanism of necking 
and cold-drawing to one of cracking occurs over the range 
of stresses from about 13.5 to 16.5 MPa,  and at times near 
105 s. We have observed that in the transition region a 
specimen may exhibit both necking and cracking at the 

same time, and in this region it becomes difficult to predict 
just which mechanism will ultimately cause the failure. 

If the same two failure modes occur in the case of 
polypropylene, then it is clear from Figure 7 that the 
mechanism of cracking does not appear until times of 
nearly 107 are reached. For example, in the specimen 
loaded to a stress of 15.2 M P a  numerous small cracks 
and/or crazes appeared beginning at a strain of 12-14~o, 
and these may have contributed to its apparent early 
fracture. It is also true that the specimen stressed at 14.2 
MPa  (filled triangles) began exhibiting small cracks 
and/or crazes at a strain of ~ 10~o. It is possible that this 
specimen would have failed by cracking had the 
experiment been continued, but it may have required up 
to one to two years lender under load. In this regard we 
have observed that for an ethylene hexene copolymer 
which was lightly branched, having one to two butyl side 
groups per one thousand carbon atoms, a time of nearly 
three years was required at room temperature for the 
failure mode to switch from one of necking and cold 
drawing to one of crack growth. 

Following a procedure which we developed 
previously 9'1°, the creep data in Figure 7 have been 
replotted in Figure 8 in terms ofisochrones of strain versus 
the applied engineering stress. Because of the high values 
of strain which this material achieves in the fully drawn 
state, the data are plotted semilogarithmically. We 
distinguish three regions bounded by the lines c~,/~ and 7. 
Below line ~ is the region in which the material deforms 
homogeneously, and upon reaching line e necking occurs. 
Between the lines e and fi lies a region in which both 
necked and unnecked material coexist. Above l ine / / i s  a 
third region where now the drawn material deforms more 
or less homogeneously. Line 7 represents the envelope for 
fracture. One can consider Figure 8 to be a phase diagram 
for creep, where in the region between c~ and/3 two phases 
are present, one drawn material and the other undrawn 
material. 

DISCUSSION 

We stated earlier that, within the range of strains and 
times covered in our experiments, the stresses in a 
constant rate of strain experiment calculated using the 
BKZ theory were in good agreement with the 
experimental data. In all cases the calculated values were 
lower than the observed values, but the maximum 
deviation was 7~,, or less. This rather good agreement 
encouraged us to examine more closely the model 
proposed by Bernstein and Zapas concerned with the 
stability and cold-drawing of viscoelastic bars. 

According to Bernstein and Zapas, for a material which 
has been subjected to a strain history #(z), where 

- o© < r ~< t, a stability criterion can be determined at time 
t, for which #(~) =/,(t), if the jump curve given by equation 
(3) can be determined. For  the condition 2 = #(t), equation 
(3) gives the stress response predicted by the BKZ theory, 
following a strain history/~(~). For  convenience we shall 
rewrite equation (3) in the following form: 

t 

crj(2,t) = w'(2,t) - w,  d~ 

0 

(4) 

where we have made the substitution v = t - 4 .  When 
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approaches zero, the ratio g(t)/p(t-~) approaches unity 
and w',(p(t)/p(t - 4),~) goes to zero. However in the case of 
the jump curve, 2/#(t-4) approaches the value 2/p(t), 
which means that in the calculation of the integral, even 
values at 4 = 0 contribute highly. Therefore we shall need 
to know the values ofw'(2,t) at very short times, i.e. values 
corresponding to the material in the 'glassy state'. From 
the work of Passaglia and Martin 4 we estimated the value 
of the modulus corresponding to the glassy state to be 
about 4.1 x 1 0  9 Pa, assuming the Poisson ratio to be 0.4. 
From dynamic measurements in flexure carried out at 
room temperature and at frequencies from 150 to 2500 Hz 
it was found that the flexure modulus was constant to 
within one per cent and equal to about 1.62 x 1 0  9 Pa. 
Since this value is significantly lower than the modulus 
corresponding to the glassy state, and is constant over the 
frequency range examined, we assume that there exists a 
transition region as shown schematically in Figure 9. 
Then between the time t~ and 1 s there is a plateau region. 
From the dynamic data we know that t~ must be less than 
about 10-4 s. We then rewrite equation (4) in the form: 

But in the interval from t~ to 1 s we have the relation: 

In w' 
- - = 0  
81n 

so that the right hand side of equation (8) becomes: 

In t 

0 

(9) 

where 
8 In w' 

r/~ - 0 In 4 

A double logarithamic plot of the single step stress- 
relaxation data shows that at the higher levels of strain, 
the data, to a good approximation form a set of parallel 
straight lines. Therefore we shall assume that for times 
greater than one second qs is a constant, independent of 
the strain. Then there exists a value 4 = 41 such that: 

t2 t 

aj(2,t)=w'(2mt)- f 1 w' / 2 \d4 1 , 

0 tl 

)° d 

Since our interest is in experiments in which t is taken to 
be a long time compared to 0.1 s, for 4 < 0.1 s p(t - 4) ~/~(t). 
Moreover, knowing that t~ is much smaller than 0.1 s, the 
first integral in equation (5) can be written as: 

I 1 , / 2  ~\d l ( [ 2  \ 2 
- ~( t ,w.~p(7) ,c-)4-~7)~ '-  ~ 7 ~ , 0 ) - .  (~ (7) ' t ' ) t  6) 

O 

But as a consequence of the existence of the plateau region 
discussed earlier, it follows that in the region from 
t 1 ~<t~< 1: 

, 2 

thus the right hand side of equation 6 becomes: 

1 , 2 , ,;~ 
p~){w (p~t),0) - w (p~t),l)} (7) 

As a result of equation (7), the integral in equation (6) 
depends only upon the values at the two limits and it is not 
necessary to know the values of the function w', in the 
transition zone. 

Now the second integral in equation (5) can be 
rewritten as: 

t 

1 , 2 d 

'~ (8) 
|nt 

1 , /  z \81n ' 
- p ( t _ 4 ) w ~ t ~ ( t _ ~ ) , 4 ) ~ d l n 4  

lnt I 

In t 

~/s , /  2 ) In  t 

0 

(10) 

In the calculations for the constant rate of strain the value 
4 1 = x / t  gave good agreement with the graphical 
integration of the right hand side of equation (8). 

Equation (5) can then be approximated by: 

, 1 , 2 , 2 w(..)} 
+ qs , 2 

- - - w / ~ , . ~ / t ~ l n t  } 
(11) 

Now Bernstein and Zapas have shown that when the 
relation: 

J'2 

f aj(2,t)d2 - = B (12) 21)% 

21 

is positive (B >0) the bar will continue to elongate in a 
homogeneous fashion. In equation (12), cr o is the 
engineering stress that the material has at time t after a 
history p(r). When B becomes zero, the bar reaches an 
insipient point of instability in which case small flaws or 
inhomogeneities in the specimen will cause it to neck. 
When B becomes negative (in Figure 1 the condition that 
A 2 > A1) the material will find itself in multiple stages of 
elongation. 

Equation (12) can be rewritten as: 

In 2 2 

f 2aj(2,t)d In 2--(2 2 - -  21)a o = B (13) 

In2~ 

Consider now a constant rate of strain experiment, in 
particular our data shown in Figure 4 for the situation 
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where the rate x = 6 . 0 ×  10 -4. and p(z)=0.19. 
Experimentally this was the point at which a neck started 
to appear. In Figure 10 we have constructed the jump  
curve showing 2a(2,t) versus ln2, where A 1 and A 2 are 
equal. We now wish to show that the instability theory of 
Bernstein and Zapas can predict the experimental 
observation that, within a certain range of h-, necking 
occurs at higher values of strain as K decreases. In a 
constant  rate of strain experiment, necking occurs after 
the stress maximum is reached. Thus at elongations 
greater than that at which the neck occurs the stress will 
continue to decrease for a time before the plateau value is 
reached. Consider two constant  rate of strain 
experiments, one done at rate ~:t, and the other at rate x2 
where x I >x2.  If eN~ is the strain at which necking 
occurred for rate xl, and at time t~ =em/x t ,  then we wish 
to determine whether the material will be stable when it 
reaches the same strain at rate K 2 and time t 2 =eNUx 2. To 
a first approximat ion the ratio of the two Maxwell lines 
will be: 

aol w'(1 -t-~NI~;NI/K1) = R  (14) 
ao2 -- w'(1 +~N~,eN1/~2) 

where in Figure 1 the Maxwell line is the horizontal line 
drawn at a o, or (A~=A2). With the condit ion that 
~(t)= 1 +~:~'1, we rewrite equation (11) as: 

aJl(2,tl) 

aJ2(k, t  2) 
- - < R ,  for 2>p( t )  (17) 

It follows, then, that: 

).o 20 

(18) 

where 2 o = 1 +eN~ and 2, is any 2 greater than ;t o. If the 
q u a n t i t y  O'o2(). s - 2 o) is subtracted from both sides of the 
inequality in equation (18), then: 

lftTdl(~,tl)d~-(,~s-,~o)tTo2<ItTJ2(ft,f2)d~-(,~s-)~o)tTo2 
.;.o 2° 

(19) 

F rom equation (14), ao2 =aol/R; so that: 

R[31 ~ ' f  O.jl(,).,/1 ) d ^  ft. , ~_ (  s _ ~ O ) G O  1 }<fffj2(~,12)dff_(Rs_t~o)Go 2 

";.o ko 
(20) 

But the quanti ty inside the brackets on the left hand side 
of the equation is zero since aol has been taken as the 
stress at the insipient point of instability. Therefore: 

2 

f as'-(f~,t2)dfu - ()~s -- ) ' o )ao  2 > 0 (21) 

Thus in a constant  rate of strain experiment carried out at 
a lower rate of strain than the value ~c 1 the point of  
instability will occur at a larger strain. This result is in 
agreement with our experimental observations as is 
shown in Figure 4. By a similar argument  this same result 
can be shown to be true for other strain histories which we 
have examined, for example constant  rate of stress and 
creep. In Figure 5 it can be seen that the strain at which 
necking occurs becomes larger as the rate of loading 
decreases. In the creep experiment (Figure 8) the line 

9ajl(2,tl)--w'(21t0+ ~ , , " (  -2 __ , , x / t , / I n  r, + g 
#(/1 -- X/ t l  ) \~l(t l  -- X/ / I  ) / 

(15) 

1 / ) .  , 2 . 
where g , ,0 ~, 1 is the 

contribution from the 'glassy region', and here is taken to 
be independent of time. Similarly, 

r# f 2 ~-~. aA2,12)=w'(2,t2)+ '5 ~ w ' [  , - - , x / t ,  ilnt2 +g 
p(t2 -- x / t2 )  \ l l ( t 2 - - x / t 2  ) -/ 

(16) 

If equations (15) and (16) are compared term by term, one 
can conclude that: 

=.-. 

CL 

0.5 

oL 

% -- ~ - - -  

Figure 10 

l l I I I 
2 3 4 5 5 

X 

Jump curve showing ka(Lt)  versus In). 
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corresponding to necking shifts to larger strains as the 
load decreases. 

For a quantitative description of the point at which the 
instability occurs one needs isochronal data over a much 
wider range of strains than can be obtained from single 
step stress relaxation experiments. In the present work 
we have constructed one possible set of isochrones by 
extrapolating our data into the region of very high strains. 
This particular surface cannot, by any means, be 
considered unique. It is designed to be in agreement with 
the available experimental results. From the constant rate 
of strain experiments, and using the BKZ theory, it can be 
deduced that each isochrone should go through a 
maximum at a strain very close to the point where the 
maximum stress occurs in a constant rate of strain 
experiment. Experiments also show that the maxima are 
shifted to smaller strains at shorter times. This behaviour 
indicates that the assumption made earlier in deriving 
equation (10) is not strictly true. The assumption that on a 
double logarithmic plot the isochrones were parallel was 
made in order to give a simple example. From stress-- 
relaxation data obtained on a specimen which had been 
elongated and then allowed to relax to a value of 2 as high 
as 9.5, it was found that at the very early times the stress 
levelled offto a value which yielded a modulus higher than 
that corresponding to the instantaneous modulus of the 
undrawn material. Also, at times greater than about 5 s 
the stress shows a time dependence and a rate of decay 
that is comparable to that of the undrawn material. 
Therefore, we shall assume that in the region of very large 
strain the isochrone for time t = 0 is the same as that for 
t = 1. It is also assumed that at strains greater than about 
10~0 the rate of relaxation is independent of the level of 
strain. This assumption appears to be reasonable based 
on data which we have obtained on a sample of very high 
molecular weight linear polyethylene (Mw__~4 x 106). In 
the case of this polyethylene, which does not exhibit 
necking, we have been able to obtain stress relaxation 
data at very high extensions, and the logarithm of the rate 
of relaxation was found to be independent of the level of 

strain. Finally from creep data we know that the necked 
polypropylene has a 'natural draw' of about 2 = 6, as is 
indicated by the line fl in Figure 8. 

From the Bernstein and Zapas theory it is known that 
following the occurrence of the maximum in the 
isochrones there must be a minimum before the natural 
draw is reached. On the assumption that the isochrones 
must be smooth, and using all of the available 
experimental results just described, we have constructed, 
by trial and error, the diagram shown in Figure 11. For 
ease of construction we have plotted it in terms of log 
w(2,t) versus log (2 - 1). Assuming that the dotted line in 
Figure 11 connects all the maxima, we can deduce the 
position of the maximum for the isochrone due to the 
instantaneous modulus (t = 0), From the surface shown in 
Figure 11 we have calculated the behaviour for several 
constant rate of strain and creep experiments and the 
calculated values for the point of instability are well 
within the experimental reproducibility. This result 
should not be surprising since the same experimental 
results were used in constructing the surface. We have also 
calculated the point of instability for the two step constant 
rate of loading experiment described in Figure 5 and the 
calculated value was found to be the same as that 
observed experimentally. 

C O N C L U S I O N  

We can say that the Bernstein and Zapas instability 
theory may provide a reasonable description of the 
phenomenon of necking, and with the aid of experiments 
involving a variety of different strain histories one can 
construct a surface of isochrones of stress versus strain 
from which it is possible to predict the point at which 
necking will occur for other strain histories. This, we 
believe, may turn out to be a valuable procedure for 
predicting the insipient point of necking for even more 
complicated strain histories. The present work should be 
considered only as a first step for further investigation into 
the understanding of the phenomena of instabilities which 
may occur in other polymers. 
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